Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

L-Cysteine Metabolism and Fermentation in Microorganisms.

Identifieur interne : 000347 ( Main/Exploration ); précédent : 000346; suivant : 000348

L-Cysteine Metabolism and Fermentation in Microorganisms.

Auteurs : Hiroshi Takagi [Japon] ; Iwao Ohtsu [Japon]

Source :

RBID : pubmed:27872962

Descripteurs français

English descriptors

Abstract

L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.

DOI: 10.1007/10_2016_29
PubMed: 27872962


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">L-Cysteine Metabolism and Fermentation in Microorganisms.</title>
<author>
<name sortKey="Takagi, Hiroshi" sort="Takagi, Hiroshi" uniqKey="Takagi H" first="Hiroshi" last="Takagi">Hiroshi Takagi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan. hiro@bs.naist.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192</wicri:regionArea>
<wicri:noRegion>630-0192</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohtsu, Iwao" sort="Ohtsu, Iwao" uniqKey="Ohtsu I" first="Iwao" last="Ohtsu">Iwao Ohtsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192</wicri:regionArea>
<wicri:noRegion>630-0192</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27872962</idno>
<idno type="pmid">27872962</idno>
<idno type="doi">10.1007/10_2016_29</idno>
<idno type="wicri:Area/Main/Corpus">000390</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000390</idno>
<idno type="wicri:Area/Main/Curation">000390</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000390</idno>
<idno type="wicri:Area/Main/Exploration">000390</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">L-Cysteine Metabolism and Fermentation in Microorganisms.</title>
<author>
<name sortKey="Takagi, Hiroshi" sort="Takagi, Hiroshi" uniqKey="Takagi H" first="Hiroshi" last="Takagi">Hiroshi Takagi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan. hiro@bs.naist.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192</wicri:regionArea>
<wicri:noRegion>630-0192</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohtsu, Iwao" sort="Ohtsu, Iwao" uniqKey="Ohtsu I" first="Iwao" last="Ohtsu">Iwao Ohtsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192</wicri:regionArea>
<wicri:noRegion>630-0192</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advances in biochemical engineering/biotechnology</title>
<idno type="ISSN">0724-6145</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Physiological Phenomena (MeSH)</term>
<term>Bacterial Proteins (physiology)</term>
<term>Biological Products (chemical synthesis)</term>
<term>Biological Products (metabolism)</term>
<term>Bioreactors (microbiology)</term>
<term>Cysteine (physiology)</term>
<term>Fermentation (physiology)</term>
<term>Genetic Enhancement (methods)</term>
<term>Metabolic Engineering (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amélioration génétique (méthodes)</term>
<term>Bioréacteurs (microbiologie)</term>
<term>Cystéine (physiologie)</term>
<term>Fermentation (physiologie)</term>
<term>Génie métabolique (méthodes)</term>
<term>Phénomènes physiologiques bactériens (MeSH)</term>
<term>Produits biologiques (métabolisme)</term>
<term>Produits biologiques (synthèse chimique)</term>
<term>Protéines bactériennes (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Biological Products</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Biological Products</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Cysteine</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetic Enhancement</term>
<term>Metabolic Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bioréacteurs</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Bioreactors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Produits biologiques</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Amélioration génétique</term>
<term>Génie métabolique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cystéine</term>
<term>Fermentation</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fermentation</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Produits biologiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacterial Physiological Phenomena</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phénomènes physiologiques bactériens</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27872962</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0724-6145</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>159</Volume>
<PubDate>
<MedlineDate>2017</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Advances in biochemical engineering/biotechnology</Title>
<ISOAbbreviation>Adv Biochem Eng Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>L-Cysteine Metabolism and Fermentation in Microorganisms.</ArticleTitle>
<Pagination>
<MedlinePgn>129-151</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/10_2016_29</ELocationID>
<Abstract>
<AbstractText>L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Takagi</LastName>
<ForeName>Hiroshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan. hiro@bs.naist.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ohtsu</LastName>
<ForeName>Iwao</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Adv Biochem Eng Biotechnol</MedlineTA>
<NlmUniqueID>8307733</NlmUniqueID>
<ISSNLinking>0724-6145</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001688">Biological Products</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018407" MajorTopicYN="Y">Bacterial Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001688" MajorTopicYN="N">Biological Products</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019149" MajorTopicYN="N">Bioreactors</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024861" MajorTopicYN="N">Genetic Enhancement</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="N">Metabolic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Escherichia coli</Keyword>
<Keyword MajorTopicYN="N">Feedback inhibition</Keyword>
<Keyword MajorTopicYN="N">Fermentation</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">L-Cysteine</Keyword>
<Keyword MajorTopicYN="N">L-Cysteine desulfhydrase</Keyword>
<Keyword MajorTopicYN="N">L-Cysteine transporter</Keyword>
<Keyword MajorTopicYN="N">L-Cysteine/L-Cystine shuttle system</Keyword>
<Keyword MajorTopicYN="N">L-Serine O-acetyltransferase</Keyword>
<Keyword MajorTopicYN="N">O-acetyl-L-serine sulfhydrylase</Keyword>
<Keyword MajorTopicYN="N">Thioredoxin</Keyword>
<Keyword MajorTopicYN="N">Thiosulfate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27872962</ArticleId>
<ArticleId IdType="doi">10.1007/10_2016_29</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Takagi, Hiroshi" sort="Takagi, Hiroshi" uniqKey="Takagi H" first="Hiroshi" last="Takagi">Hiroshi Takagi</name>
</noRegion>
<name sortKey="Ohtsu, Iwao" sort="Ohtsu, Iwao" uniqKey="Ohtsu I" first="Iwao" last="Ohtsu">Iwao Ohtsu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000347 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000347 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27872962
   |texte=   L-Cysteine Metabolism and Fermentation in Microorganisms.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27872962" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020